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A semi-implicit finite-difference approach for
two-dimensional coupled Burgers’ equations

Mohammad Tamsir, Vineet Kumar Srivastava

Abstract— In this paper, a semi-implicit finite-difference method is used to find the numerical solution of two-dimensional Coupled Burgers’
equation. The proposed scheme forms a system of linear algebraic difference equations to be solved at each time-step. The linear system is
solved by direct method. Numerical results are compared with those of exact solutions and other available results. The present method per-
forms well. The proposed scheme can be extended for solving non-linear problems arising in mechanics and other areas of engineering and
science.

Index Terms —Burgers’ equations; nite- difference; semi-implicit scheme; Reynolds number.
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1  INTRODUCTION

HE two-dimensional Burgers’ equation is a mathe-
matical model which is widely used for various phys-

ical applications, such as modeling of gas dynamics and
traffic flow, shock waves [1], investigating the shallow
water waves[2,3], in examining the chemical reaction-
diffusion model of Brusselator[4] etc. It is also used for
testing several numerical algorithms. The first attempt to
solve Burgers’ equation analytically was given by Bate-
man  [5],  who  derived  the  steady  solution  for  a  simple
one-dimensional Burgers’ equation, which was used by
J.M. Burger in [6] to model turbulence. In the past several
years, numerical solution to one-dimensional Burgers’
equation and system of multidimensional Burgers’ equa-
tions have attracted a lot of attention from both scientists
and engineers and which has resulted in various finite-
difference, finite-element and boundary element me-
thods. Since in this paper the focus is numerical solution
of the two-dimensional Burgers’ equations, a detailed
survey of the numerical schemes for solving the one-
dimensional Burgers’ equation is not necessary. Interest-
ed readers can refer to [7-13] for more details.

Consider two-dimensional coupled nonlinear viscous
Burgers’ equations:
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subject to the initial conditions:

1( , , 0) ( , );  ( , ) ,u x y x y x y
2( , , 0) ( , );  ( , ) ,v x y x y x y

and boundary conditions:

( , , ) ( , , );  ( , ) ,  0,u x y t x y t x y t
( , , ) ( , , );  ( , ) ,  0,v x y t x y t x y t

where {( , ) : , } andx y a x b c y d is
its boundary; ( , , )u x y t and ( , , )v x y t are the velocity
components to be determined, 1 , 2 , and are
known functions and Re is the Reynolds number.
The analytic solution of eqns. (1) and (2) was proposed by
Fletcher using the Hopf-Cole transformation [14]. The
numerical solutions of this system of equations have been
solved by many researchers. Jain and Holla [15] devel-
oped two algorithms based on cubic spline method.
Fletcher [16] has discussed the comparison of a number of
different numerical approaches.Wubs and Goede [17]
have applied an explicit–implicit method. Goyon [18]
used several multilevel schemes with ADI.  Recently A. R.
Bahad r [19] has applied a fully implicit method. Vineet
etl.[20] have used Crank-Nicolson scheme for numerical
solutions of two dimensional coupled Burgers’ eqations.
The usual implicit schemes are obviously unconditionally
stable with higher order truncation error
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2 2 2(( ) ( ) ( ) )t x y . However, they involve solv-
ing a nonlinear algebraic system of equations which
makes it inefficient in practice. In this paper, to resolve
the above issue, the semi-implicit scheme proposed by
Ozis [7] is used for solving two-dimensional Burgers’ eq-
uations which has a truncation error

2 2(( ) ( ) ( ) )t x y . Three numerical experiments
have been carried out and their results are presented to
illustrate the efficiency of the proposed method.

2  THE SOLUTION PROCEDURE

The computational domain is discretized with uniform
grid. Denote the discrete approximation of ( , , )u x y t and

( , , )v x y t at the grid point ( , , )i x j y n t by ,
n
i ju and

,
n
i jv respectively ( 0,1, 2......, ; 0,1,2....., ;x yi n j n

0,1,2......),n where 1/ xx n is  the  grid  size  in  x-

direction, 1/ yy n is the grid size in y-direction, and

t represents the increment in time.
Semi-implicit finite-difference approximation to (1) and
(2) are given by:

1 1 1 1 1
, , 1, 1, , 1 , 1

, ,

1 1 1 1 1 1
1, , 1, , 1 , , 1

2 2

 ( )  v ( )
2 2

2 21 [( ) ( )] 0
Re ( ) ( )

n n n n n n
i j i j i j i j i j i jn n

i j i j

n n n n n n
i j i j i j i j i j i j

u u u u u u
u

t x y
u u u u u u

x y
1 1 1 1 1

, , 1, 1, , 1 , 1
, ,

1 1 1 1 1 1
1, , 1, , 1 , , 1

2 2

 ( )  v ( )
2 2

2 21 [( ) ( )] 0
Re ( ) ( )

n n n n n n
i j i j i j i j i j i jn n

i j i j

n n n n n n
i j i j i j i j i j i j

v v v v v v
u

t x y
v v v v v v

x y

The above linear system of equations is solved by direct
method.

3 NUMERICAL EXAMPLES AND DISCUSSION
3.1 Problem 1
The exact solutions of Burgers’ equations (1) and (2) can
be generated by using the Hopf–Cole transformation [3]
which is:

3 1( , , ) ,
4 4[1 exp( ( 4 4 )Re/ 32 )]

u x y t
x y t

3 1( , , ) ,
4 4[1 exp( ( 4 4 )Re/ 32 )]

v x y t
x y t

Here the computational domain is taken as a square do-
main {( , ) : 0 1,0 1}x y x y . The initial and

boundary conditions for ( , , )u x y t and ( , , )v x y t are tak-
en from the analytical solutions. The numerical computa-
tions are performed using uniform grid, with a mesh
width 0.05x y . From Tables 1-4, it is clear that
the results from the present study are in good agreement
with the exact solution for different values of Reynolds
number. Comparison of numerical and exact solutions for u
and v for  Re=100 at 0.5t with 0.001t are
shown in Figs. 1-4.

3.2 Problem 2.
Here the computational domain is taken as

{( , ) : 0 0.5,0 0.5}x y x y and Burgers’
equations (1) and (2) are taken with the initial conditions:

( , ,0) sin( ) cos( )
( , ,0)

u x y x y
v x y x y

and boundary conditions:

(0, , ) cos( ),   (0.5, , ) 1 cos( )
 0 0.5, 0,

(0, , ) ,             (0.5, , ) 0.5

u y t y u y t y
y t

v y t y v y t y

( ,0, ) 1 sin( ),   ( ,0.5, ) sin( )
 0 0.5, 0,

( ,0, ) ,             ( ,0.5, ) 0.5

u x t x u x t x
x t

v x t x v x t x

The numerical computations are performed using
20 20 grids and 0.0001t . The steady state solu-
tions for Re 50 and Re 500 are obtained at

0.625t . Perspective views of u and v for Re 50  at
0.0001t are given in Figs. 5 and 6 respectively. The

results given in Tables 5-8 at some typical mesh points
( , )x y  demonstrate that the proposed scheme achieves
similar results given by [15, 19].

3.3 Problem 3.
In this problem the computational domain is

{( , ) : 0 1,0 1}x y x y and Burgers’ equa-
tions (1) and (2) are taken with the initial conditions:

 4 cos(2 )sin( )( , ,0) ,      (x,y)
Re(2 sin(2 )sin( ))

x yu x y
x y

 2 sin(2 ) cos( )( , ,0) ,      (x,y)
Re(2 sin(2 )sin( ))

x yv x y
x y

with boundary conditions:
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25
Re2 sin( )(0, , )  ,   t 0
Re

t

e yu y t ;

25
Re2 sin( )(1, , )  ,   t 0
Re

t

e yu y t

( ,0, ) 0,   t 0u x t ; ( ,1, ) 0,  t 0u x t
(0, , ) 0,   t 0v y t ; (1, , ) 0,   t 0v y t

25
Re sin(2 )( ,0, )  ,   t 0

Re

t

e xv x t ;

25
Re sin(2 )( ,1, ) ,   t 0

Re

t

e xv x t

for which the exact solutions are:
2

2

5
Re

5
Re

4 cos(2 )sin( )( , , )
Re(2 sin(2 )sin( ))

t

t

e x yu x y t
e x y

2

2

5
Re

5
Re

2 sin(2 ) cos( )( , , )
Re(2 sin(2 )sin( ))

t

t

e x yv x y t
e x y

The computed solutions for u and v are ploted in Figs 7
and 9 respestively while the analytical solutions for u
and v are shown in Figs 8 and 10 at 20 20  grids and
at time level 1.0t  with 0.001t  for Re 1000 .
From these figures it is obvious that numerical solutions
are in excellent agreement with the corresponding analyt-
ical solutions.

Table 1.
The numerical results for u  in comparison with the exact solution
at 0.01t and 1t  with 0.0001t ,and Re 10 .
(x, y) t=0.01

Numerical        Exact
t=1.0

Numerical Exact

(0.1, 0.1)
(0.5, 0.1)
(0.9, 0.1)
(0.3, 0.3)
(0.7, 0.3)
(0.1, 0.5)
(0.5, 0.5)
(0.9, 0.5)
(0.3, 0.7)
(0.7, 0.7)
(0.1, 0.9)
(0.5, 0.9)
(0.9, 0.9)

0.624805       0.624805
0.594202       0.594202
0.567082       0.567082
0.624805       0.624805
0.594202       0.594202
0.655431       0.655431
0.624805       0.624805
0.594202       0.594202
0.655431       0.655431
0.624805       0.624805
0.682611       0.682611
0.655431       0.655431
0.624805       0.624805

0.605626       0.605626
0.576840       0.576840
0.553017       0.553017
0.605627       0.605626
0.576840       0.576840
0.636685       0.636685
0.605628       0.605626
0.576840       0.576840
0.636687       0.636685
0.605629       0.605626
0.666353       0.666353
0.636687       0.636685
0.605628       0.605626

Table 2.
The numerical results for v  in comparison with the exact solution
at 0.01t and 1.0t  with 0.0001t ,and Re 10 .
(x, y) t=0.01

Numerical        Exact
t=1.0

Numerical Exact

(0.1, 0.1)
(0.5, 0.1)
(0.9, 0.1)
(0.3, 0.3)
(0.7, 0.3)
(0.1, 0.5)
(0.5, 0.5)
(0.9, 0.5)
(0.3, 0.7)
(0.7, 0.7)
(0.1, 0.9)
(0.5, 0.9)
(0.9, 0.9)

0.875195       0.875195
0.905798       0.905798
0.932918       0.932918
0.875195       0.875195
0.905798       0.905798
0.844569       0.844569
0.875195       0.875195
0.905798       0.905798
0.844569       0.844569
0.875195       0.875195
0.817389       0.817389
0.844569       0.844569
0.875195       0.875195

0.894374       0.894374
0.923160       0.923160
0.946983       0.946983
0.894373       0.894374
0.923160       0.923160
0.863315       0.863315
0.894372       0.894374
0.923160       0.923160
0.863313       0.863315
0.894371       0.894374
0.833647       0.833647
0.863313       0.863315
0.894372       0.894374

Table 3
The numerical results for u  in comparison with the exact solution
at 0.01t and 1.0t  with 0.0001t ,and Re 100 .
(x, y) t=0.01

Numerical        Exact
t=1.0

Numerical Exact

(0.1, 0.1)
(0.5, 0.1)
(0.9, 0.1)
(0.3, 0.3)
(0.7, 0.3)
(0.1, 0.5)
(0.5, 0.5)
(0.9, 0.5)
(0.3, 0.7)
(0.7, 0.7)
(0.1, 0.9)
(0.5, 0.9)
(0.9, 0.9)

0.623106       0.623047
0.501617       0.501622
0.500011       0.500011
0.623106       0.623040
0.501617       0.501622
0.748272       0.748274
0.623106       0.623047
0.501617       0.501622
0.748272       0.748274
0.623106       0.623047
0.749988       0.749988
0.748272       0.748274
0.623106       0.623047

0.510307       0.510522
0.500072       0.500074
0.500000       0.500000
0.509824       0.510522
0.500067       0.500074
0.716947       0.716759
0.509499       0.510522
0.500063       0.500074
0.717266       0.716759
0.509314       0.510522
0.749738       0.749742
0.717530       0.716759
0.509172       0.510522

Table 4
The numerical results for v  in comparison with the exact solution
at 0.01t and 1.0t with 0.0001t ,and Re 100 .
(x, y) t=0.01

Numerical        Exact
t=1.0

Numerical Exact

(0.1, 0.1)
(0.5, 0.1)
(0.9, 0.1)
(0.3, 0.3)
(0.7, 0.3)
(0.1, 0.5)
(0.5, 0.5)
(0.9, 0.5)
(0.3, 0.7)
(0.7, 0.7)
(0.1, 0.9)
(0.5, 0.9)
(0.9, 0.9)

0.876894       0.876953
0.998383       0.998378
0.999989       0.999989
0.876894       0.876953
0.998383       0.998378
0.751728       0.751726
0.876894       0.876953
0.998383       0.998378
0.751728       0.751726
0.876894       0.876953
0.750012       0.750012
0.751728       0.751726
0.876894       0.876953

0.989693       0.989478
0.999928       0.999926
1.00000 0      1.000000
0.990176       0.989478
0.999933       0.999926
0.783053       0.783241
0.990501       0.989478
0.999937       0.999926
0.782734       0.783241
0.990686       0.989478
0.750262       0.750258
0.782470 0.783241
0.990828       0.989478
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Table 5.
Comparison of computed values of u  for Re 50  at

0.625t .

Table 6.
Comparison of computed values of v  for Re 50  at

0.625t .
(x, y) Present work A.R.Bahadir Jain and Holla

(0.1, 0.1)
(0.3, 0.1)
(0.2, 0.2)
(0.4, 0.2)
(0.1, 0.3)
(0.3, 0.3)
(0.2, 0.4)
(0.4, 0.4)

0.09869
0.14158
0.16754
0.17110
0.26378
0.22655
0.32851
0.32501

0.09824
0.14112
0.16681
0.17065
0.26261
0.22576
0.32745
0.32441

0.09773
0.14039
0.16660
0.17397
0.26294
0.22463
0.32402
0.31822

Table 7.
Comparison of computed values of u  for Re 500  at

0.625t .
(x, y) Present work A.R.Bahadir Jain and Holla
(0.15, 0.1)
(0.3, 0.1)
(0.1, 0.2)
(0.2, 0.2)
(0.1, 0.3)
(0.3, 0.3)
(0.15, 0.4)
(0.2, 0.4)

0.96870
1.03200
0.86178
0.87813
0.67920
0.79945
0.66039
0.58958

0.96650
1.02970
0.84449
0.87631
0.67809
0.79792
0.54601
0.58874

0.95691
0.95616
0.84257
0.86399
0.67667
0.76876
0.54408
0.58778

Table 8.
Comparison of computed values of v  for Re 500  at

0.625t .
(x, y) Present work A.R.Bahadir Jain and Holla
(0.15, 0.1)
(0.3, 0.1)
(0.1, 0.2)
(0.2, 0.2)
(0.1, 0.3)
(0.3, 0.3)

(0.15, 0.4)
(0.2, 0.4)

0.09043
0.10728
0.17295
0.16816
0.26268
0.23550
0.29022
0.30418

0.09020
0.10690
0.17972
0.16777
0.26222
0.23497
0.31753
0.30371

0.10177
0.13287
0.18503
0.18169
0.26560
0.25142
0.32084
0.30927

Fig.1. The numerical value of u  for Re 100  at time level
0.5t  with 0.0001t .

Fig.2. The exact value of u  for Re 100  at time level
0.5t  with 0.0001t .

Fig.3. The numerical value of v  for Re 100  at time level
0.5t  with 0.0001t .

(x, y) Present work A.R.Bahadir Jain and Holla
(0.1, 0.1)
(0.3, 0.1)
(0.2, 0.2)
(0.4, 0.2)
(0.1, 0.3)
(0.3, 0.3)
(0.2, 0.4)
(0.4, 0.4)

0.97146
1.15280
0.86308
0.97984
0.66316
0.77232
0.58181
0.75860

0.96688
1.14827
0.85911
0.97637
0.66019
0.76932
0.57966
0.75678

0.97258
1.16214
0.86281
0.96483
0.66318
0.77030
0.58070
0.74435
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Fig.4. The exact value of v  for Re 100  at time level
0.5t  with 0.0001t .

Fig.5. The computed value of u for Re 50  at time level
0.625t .

Fig.6. The computed value of v for Re 50  at time level
0.625t .

Fig.7. The numerical value of u  at 20 20 grids for
Re 1000  and at time level 1.0t  with 0.001t .

Fig.8. The exact value of u  at 20 20 grids for
Re 1000  and at time level 1.0t  with 0.001t .

Fig.9. The numerical value of v  at 20 20 grids for
Re 1000  and at time level 1.0t  with 0.001t .
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Fig.10. The exact value of v  at 20 20 grids for
Re 1000  and at time level 1.0t  with 0.001t .

4  CONCLUSION

A semi-implicit finite-difference method based on Ozis [7]
has been presented for solving two-dimensional coupled
nonlinear viscous Burgers’ equations. The efficiency and
numerical accuracy of the present scheme are validated
through three numerical examples. Numerical results are
compared well with those from the exact solutions and
previous available results.
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